محققان روشی ارائه کردند که در آن با ترکیب نانوحفرههای زیستی و یادگیری عمیق با استفاده از هوش مصنوعی، تغییرات پروتئین در بدن انسان قابل تشخیص میشود. این فناوری راههای جدیدی برای تشخیص بیماری ارائه میدهد.
آیتیمن- پروتئینها را میتوان نیروی کاری سلول دانست، آنها پس از سنتز معمولا دچار تغییرات مختلفی میشوند. از آنجا که این اصلاحات میتواند به شدت بر نحوه عملکرد یک پروتئین در سلول تأثیر بگذارند، این «اصلاحات» یا PTM در بسیاری از فرآیندهای زیستی مهم هستند.
PTM همچنین به عنوان نشانگرهای زیستی برای شناسایی برخی بیماریها عمل میکنند، به این معنی که برای جلوگیری از تشخیص اشتباه، میتوان آنها را با دقت تشخیص داد و تجزیه و تحلیل کرد اما روشهای سنتی از نظر حساسیت و ویژگی محدود هستند، به خصوص هنگام برخورد با غلظت کم پروتئینها و الگوهای پیچیده PTM این روشها محدودیتهای زیادی را تجربه میکنند.
به تازگی دانشمندان دانشگاه پلی تکنیک لوزان در سوئیس (EPFL) یک روش جدید ارائه کردند که حساسیت نانوحفرههای زیستی را با دقت یادگیری عمیق ترکیب میکند. این رویکرد نوآورانه میتواند نحوه تشخیص و تجزیه و تحلیل PTMها را در بدن انسان تغییر دهد.
این روش جدید از یک نانوحفره زیستی برای تشخیص و تمایز پپتیدها بهره میبرد. گروه تحقیقاتی دال پرارو پیش از این با نانوحفرههای مبتنی بر آئرولیزین کار کرده بود تا حسگرهایی با وضوح بالایی از مولکولهای پیچیده تهیه کنند و حتی دادههای رمزگذاری شده در ماکرومولکولهای مصنوعی را بخوانند. این فناوری نانوحفره بهاندازه کافی حساس است تا بتواند این پپتیدها را در غلظتهای پیکومولار تشخیص دهد، که یک پیشرفت قابل توجه نسبت به روشهای موجود است.
اما این روش چگونه کار میکند؟ با عبور پپتیدها از نانوحفره، آنها باعث ایجاد تغییرات مشخص در جریان یونها در نانوحفره میشوند که به این جریان عبوری از نانوحفره، “جریان یونی” گفته میشود. هر نوع PTM ساختار پپتید را به روشی منحصر به فرد تغییر میدهد و منجر به امضاهای متمایز در جریان میشود. با ضبط این تغییرات در جریان، این روش میتواند بین PTMهای مختلف پپتیدها تمایز قائل شود.
آنچه باعث میشود این رویکرد از روشهای پیشین متمایز شود این است که در این فناوری از الگوریتمهای یادگیری عمیق برای تجزیه و تحلیل دادههای پیچیده استفاده میشود. این مدل با اطمینان میتواند امضاهای فعلی پپتیدها و انواع PTM آنها را شناسایی کند و روشی سریع، اتوماتیک و بسیار دقیق برای طبقه بندی آنها فراهم کند.